Involvement of proapoptotic Bcl-2 family members in terbinafine-induced mitochondrial dysfunction and apoptosis in HL60 cells

Kuo-Ching Yang a,1, Chi-Chen Wu b,1, Chih-Hsiung Wu c, Jur-Hao Chen a,1, Chien-Hwa Chu d, Chien-Ho Chen d, Yean-Hwei Chou e, Ying-Jan Wang f, Wen-Sen Lee g, How Tseng g, Shyr-Yi Lin h, Chia-Hwa Lee d, Yuan-Soon Ho d,∗

a Department of Internal Medicine, Division of Gastroenterology, Shin Kong Wu Ho-Su Memory Hospital, Taipei 112, Taiwan
b Department of Anesthesiology, School of Medicine, Taipei Medical University and Hospital, Taipei 110, Taiwan
c Department of Surgery, School of Medicine, Taipei Medical University and Hospital, Taipei 110, Taiwan
d Graduate Institute of Biomedical Technology, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei 110, Taiwan
e Department of Surgery, Division of General Surgery, Shin Kong Wu Ho-Su Memory Hospital, Taipei 112, Taiwan
f Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan 704, Taiwan
g Graduate Institute of Medical Sciences, Department of Physiology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
h Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei 110, Taiwan

Received 1 February 2005; accepted 1 July 2005

Abstract

Terbinafine (TB, lamisil®), a promising world widely used oral-anti-fungal agent, has been used in the treatment of superficial mycosis. In this study, we found that apoptosis but not cell growth arrest was induced by TB (1 μM, for 24 h) in human promyelocytic leukemia (HL60) cells. The apoptotic effect induced by TB in the HL60 cell was not through the general differentiation mechanisms evidenced by evaluation of three recognized markers, including CD11b, CD33, and morphological features. In addition, our results also revealed that TB-induced apoptosis was not through the cellular surface CD 95 receptor-mediated signaling pathway. We found that the mitochondria membrane in the TB-treated HL60 cells was dissipated by decreasing of the electrochemical gradient (ΔΨm) led to leakage of cytochrome c from mitochondria into cytosol. Such effects were completely blocked by in vitro transfection of the HL60 cells with Bcl-2 overexpression plasmid (HL60/Bcl-2). However, our data found that TB-mediated apoptosis could not be completely prevented in the Bcl-2 over expressed (HL60/Bcl-2) cells. Such results implied that additional mediators (such as caspase-9) other than mitochondria membrane permeability might contribute to the TB-induced cellular apoptosis signaling. This hypothesis was supported by the evidence that administration of caspases-9 specific inhibitor (z-LEHD-fmk) blocked the TB-induced apoptosis. Our studies highlight the molecular mechanisms of TB-induced apoptosis in human promyelocytic leukemia (HL60) cells.

Keywords: Terbinafine; Apoptosis; HL60; Caspase-9; Mitochondria

Abbreviations: Apaf-1, apoptotic protease activating factor 1; CCCP, carbonyl cyanide m-chlorophenylhydrazone; CHX, cycloheximide; DMEM, Dulbecco’s modified Eagle’s medium; FACS, fluorescence-activated cell sorter; FCS, fetal calf serum; PBS, phosphate-buffered saline; PI, propidium iodide; PMSF, phenylmethyl sulfonyl fluoride; FITC, fluorescein isothiocyanate; RA, retinoic acid; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TB, terbinafine; Val, valinomycin.

* Corresponding author. Tel.: +886 2 27361661x3311; fax: +886 2 2739 3422.
E-mail address: hoyuansn@tmu.edu.tw (Y.-S. Ho).

1 Contributed equally.
1. Introduction

Terbinafine (TB) (lamisil®), a promising world widely used oral-anti-fungal agent, is a newly synthesized oral anti-myotic drug in the allylamines class: a fungicidal agent that inhibits ergosterol synthesis at the stage of squalene epoxidation (Petranyi et al., 1984). TB shows a good safety profile and relatively few drug interactions (Abdel-Rahman and Nahata, 1997). The cream form and oral tablet of TB have been approved for clinical uses in the United States (Gupta and Shear, 1997).

Our recent studies have shown that a number of anti-fungal agents exert anti-proliferative and/or apoptotic activities in various malignant cells in vitro and in vivo (Chen et al., 2000; Ho et al., 1998, 2001). The anti-proliferative effect of TB has not been reported until our recent studies demonstrating that TB induced cell cycle arrest at the G0/G1 phase of the cell cycle in hepatoma and colon cancer cells (Lee et al., 2003). We also showed that TB at a range of concentrations (0–120 μM) dose-dependently decreased cell number in cultured human umbilical vascular endothelial cells (Ho et al., 2004). These findings suggest the potential application of TB in anti-angiogenic therapy for clinical anti-cancer purpose.

Previously, we have demonstrated that TB at a range of concentrations (1–30 μM) induces apoptosis in cultured HL60 cells (Lee et al., 2003). However, the mechanism underlying of TB-induced the occurrence of apoptosis is not clear. The effector caspases, including caspase-3, may be activated via mitochondria-independent or -dependent pathways (Shi, 2002). The mitochondria independent pathway is activated through binding of the ligands (the tumor necrosis-factor receptor family, such as Fas and TNF) to their receptors and requires the direct cleavage of caspase-3 by activated caspase-8 (Stennicke et al., 1998). On the other hand, caspase-3 can also be activated through the mitochondria-dependent signaling proteins by releasing cytochrome c from its intermembrane space into the cytoplasm (Reed, 1997). In the cytoplasm, cytochrome c, in the presence of ATP or dATP, associates with a complex of apoptotic protease activating factor 1 (Apaf-1) and caspase-9, and leads to autocatalytic cleavage and activation of caspase-9 in this complex (Qin et al., 1999; Saleh et al., 1999). Caspase-9 can directly cleave and activate the pro-caspase-3.

Recent studies have demonstrated that anti-tumor therapeutic agents-induced HL60 cells apoptosis was through the caspases 2, 3, 8, and 9 independent release of cytochrome c into the cytosol (Perchellet et al., 2004). Such results implied that accumulation of cytosolic cytochrome c level may play some important roles in anti-cancer drug-induced apoptosis in the HL60 cells. Although the mechanisms by which cytochrome c translocated from mitochondria into the cytosol are not fully understood, recent studies clearly demonstrated that members of the Bcl-2 family proteins regulate the mitochondria membrane functions and control the release of cytochrome c (Wang et al., 2004). This family is subdivided into two classes: anti-apoptotic members, such as Bcl-2 and Bcl-xL, which protect cells from apoptosis, and pro-apoptotic members, such as Bax and Bak, which trigger or sensitize the cells for apoptosis (Borner, 2003).

Our recent studies have demonstrated that the anti-tumor effects of TB in the solid (COLO 205, p53 wild type) and leukemia (HL60, p53 null) cancer cells were through p53-dependent and p53–independent mechanisms (Ho et al., 2004; Lee et al., 2003). However, these cancer cells have different sensitivities in terms of the occurrence of apoptosis and cell cycle arrest in response to TB treatment. These findings promoted us to investigate the molecular mechanisms of apoptosis induced by TB. The human promyelocytic leukemia cell (HL60, with nulled p53) was served as a research model for investigation of the mechanisms of TB-induced apoptosis. Our results show that TB induces apoptosis by altering mitochondrial transmembrane potential, which causes the release of cytochrome c into the cytosol, and leads to activation of the Apaf-1/caspase-9 apoptosome.

2. Materials and methods

2.1. Chemicals and reagents

Protease inhibitors (phenylmethyl sulfonyl fluoride (PMSF), pepstatin A, leupeptin, and aprotinin) were acquired from Sigma Chemical Company (Sigma Aldrich Chemie GmbH, Steinheim, Germany). Caspase-8 inhibitor (zIETD-fmk), caspase-9 inhibitor (zLEHD-fmk), caspase-3 inhibitor (zDEVD-fmk), and the general caspase inhibitor (zVAD-fmk) were obtained from Alexis Corporation (Switzerland). Dulbecco’s modified Eagle’s medium (DMEM), Fetal calf serum (FCS), penicillin/streptomycin solution, and fungizone were purchased from Gibco-Life Technologies (Paisley, UK).

2.2. Antibodies

The following polyclonal or monoclonal antibodies were obtained from various sources as indicated: anti-caspase-8, anti-cytochrome c, anti-Bax, anti-Apaf-1, and anti-Bel-2 antibodies (Santa Cruz Biotechnology, CA), anti-caspase-9, and anti-caspase-3 antibodies (Stressgen Biotechnologies, Victoria, British Columbia, Canada), anti-cytochrome c oxidase, (Research Diagnostics, Flanders, New Jersey, USA), and anti-actin mAb (Sigma Aldrich Chemie GmbH, Steinheim, Germany). CD11b leuTM-15 antibody, and CD33 antibody (rabbit anti-human) were purchased from Becton Dickinson (Cambridge, UK).
2.3. Transfection of Bcl-2 with expression plasmid

HL60 cells were transfected with pBcl-2 plasmid (pcDNA3-Bcl-2; Science Reagent, El Cajon, CA) using the Lipofectin reagent (Life Technologies, Inc., Gaithersburg, MD). Briefly, 0.8 ml of the cell suspension (3 x 10⁶ cells/ml) was added to each well in six-well plates. Two micrograms of pBcl-2 plasmid DNA were diluted in 98 μl of OPTI-MEM1 medium, and 16 μl of Lipofectin reagent were diluted in 84 μl of OPTI-MEM1 medium. The vector plasmid without Bcl-2 gene was used as a negative control. After a 45-min incubation at room temperature, the DNA and Lipofectin diluents were combined and incubated for 15 min at room temperature. Then, 200 μl of the DNA/Lipofectin mixture were added to each well, and cells were incubated for 12 h at 37 °C. Cells were allowed to express Bcl-2 for 2 days. Bcl-2 expression was confirmed by Western blotting analysis.

2.4. Cells and culture conditions

The COLO 205 cell line was isolated from human colon adenocarcinoma (CCL-222: American Type Culture Collection, ATCC). The HL60 cell line was derived from human myeloid leukemia cells (59170: ATCC). The cell line #76 KhGH (CRL 8858; ATCC) was composed of keratinocytes derived from normal human epidermis (Lee et al., 2003). The cell lines were grown in RPMI 1640 (for COLO 205 and HL60 cells) supplemented with 10% FCS, 50 μg/ml gentamycin and 0.3 mg/ml glutamine in a humidified incubator (37 °C, 5% CO₂). A 3:1 mixture of Ham’s F12 medium and DMEM medium (for #76 KhGH cells) supplemented with 10% FCS, 40 ng/ml hydrocortisone, 0.01 mg/ml chola toxin, 0.005 mg/ml insulin, and 10 ng/ml epidermal growth factor. HL60 cells were differentiated into mature neutrophil-like cells by treating with 1 μM retinoic acid (RA) for 5 days.

For the caspase inhibitors studies, the HL60 cells were seeded onto plastic six-well culture plates or 100-mm culture dishes at 5 x 10⁵ cells/ml and allowed to grow for 2–3 days. Following this, they were incubated with various concentrations (10–60 μM) of inhibitors specific to caspase-8 (zIETD-fmk), or caspase-9 (zLEHD-fmk) or with 50 μM of the general inhibitor of caspases (zVAD-fmk) for 4 h. The cells were then exposed to TB at a concentration of 30 μM for 24 h. Following the treatment, cells were harvested by centrifugation at 500xg for 5 min, washed with PBS, and subsequently used for various biochemical investigations.

2.5. Determination of cell viability

Cell viability was determined based on the trypan blue exclusion method as described previously (Ho et al., 2001; Lee et al., 2003). The viability percentage was calculated based on the percentage of unstained cells.

2.6. Wright–Giemsa stain

For Wright–Giemsa staining to monitor the extent of cellular differentiation, cells were cytospun onto ethanol-cleaned SuperFrost glass slides as described previously (Rice et al., 2004), fixed with methanol (RT, 15 min), air-dried, and stained with Wright-Giemsa stain solution (Sigma Chemical Co., St. Louis, MO), following the manufacturer’s instructions.

2.7. Flow cytometry analysis

The cell cycle stages in the TB- or DMSO-treated groups were determined by flow cytometry analysis (Ho et al., 2001, 2004; Lee et al., 2003). Nuclear DNA was stained with a reagent containing propidium iodine (50 μg/ml) and DNase-free RNase (2 U/ml) and measured using a fluorescence-activated cell sorter (FACS). The population of nuclei in each phase of the cell cycle was determined using established CellFIT DNA analysis software (Becton Dickenson, San Jose, CA).

2.8. Protein extraction, immunoprecipitation and Western blotting analysis

The HL60 cells treated with DMSO or TB were harvested, washed twice with PBS, lysed, and electrophoresed onto a PVDF membrane (Millipore) using standard techniques as described in our recent publications (Ho et al., 2004; Lee et al., 2003). The PVDF membrane were blocked by incubation for 2 h in PBS buffer containing 5% nonfat dry milk and 0.1% Tween-20, and then probed with antibodies:anti-caspase-8 (1:1000), anti-caspase-9 (1:3000), anti-caspase-3 (1:2000), anti-cytoskeletal protein β-actin (1:2500 dilution). The consistent equal signals of β-actin from the different extracts also indicate that TB and the caspases inhibitors do not interfere with protein synthesis in HL60 cells (data not shown). Immunoprecipitation was performed as described in our studies (Ho et al., 2004; Lee et al., 2003). Equal amounts of protein were immunoprecipitated with saturating amounts.
of anti-caspase-9 antibody. The caspase-9-immunoprecipitated Apaf-1 protein was then measured by Western blot analysis. Isolation of mitochondria and cytosolic fractions of cell lysates were performed as described previously (Ashktorab et al., 2004).

2.9. Analysis of apoptosis

Apoptosis in the HL60 cells subjected to various treatments was determined by using the Annexin V-FITC (fluorescein isothiocyanate) staining kit from BD Biosciences (Franklin Lakes, NJ). PI was used to differentiate apoptotic cells with preserved membrane integrity (Annexin−, PI−) from necrotic cells that lost membrane integrity (Annexin+, PI+). The assay was performed following the manufacturer’s procedure. After staining, the percentage of apoptotic cells under various treatments was analyzed by flow cytometry (FACS Caliber, BectonDickinson) as described previously (Tseng et al., 2002). Analysis of DNA fragmentation was performed as previously described (Ho et al., 1996).

2.10. Caspase activity assay

Caspase activity was measured by using caspases 3 (Promega, Madison, WI) and 9 (Chemicon, Temecula CA) colorimetric activity assay kits as previous described (Ho et al., 2003; Lin et al., 2001). Briefly, HL60 cells were lysed by addition of cell lysis buffer and protein concentration was measured. Caspase activity was assayed at 37 °C in 100 μl of assay buffer containing 50 μg (for caspase 3) or 30 μg (for caspase 9) of the indicated colorimetric peptide. Caspase activity was measured by the release of p-nitroanilide (pNA) from the labeled substrates Ac-DEVD-pNA and Ac-LEHD-pNA for caspase 3 and 9, respectively, and the free pNA was quantitated at 405 nm.

2.11. Quantification of cell-surface antigen expression

The expression of CD11b and CD33 antigen on the surface of differentiating HL60 cells was measured by flow cytometry. Cells (1 × 10⁵/100 μl RPMI were treated with 10 μl anti-CD11b/CD33 antibody and incubated at 4 °C for 20 min. The cells were washed twice with 400 μl cold PBS at 1100 rpm for 10 min, and finally resuspended in 400 μl Isoton II solution on ice before they were analyzed by using flow cytometric analysis.

2.12. Mitochondrial transmembrane potential assay

To assess the mitochondrial transmembrane potential (ΔΨm), HL60 cells (1 × 10⁵) were seeded in a 6-well plate washed twice with PBS and then loaded with the cationic lipophilic fluorochrome JC-1 (5 μg/ml) for 10 min at 37 °C. Cells were washed twice with PBS and submitted to FACS-analysis. The red fluorescence of JC-1 aggregates corresponds to the mitochondrial membrane potential whereas the green fluorescence of JC-1 monomers is indicative for the mitochondrial mass. Active mitochondria with high ΔΨm accumulate JC-1 aggregates, which are red, whereas, in the mitochondria with low ΔΨm, JC-1 stays in a monomeric, green form. This renders the red/green ratio, a sensitive indicator of the mitochondrial ΔΨm changes. In addition, carbonyl cyanide m-chlorophenylhydrazone (CCCP; Calbiochem) or valinomycin (Val, Sigma) were dissolved in 100% acetone and diluted in complete medium; the acetone concentration in the medium did not exceed 1%. Both of the CCCP and Val were added at a final concentration of 200 μM as a positive control, and the fluorescence was assessed for each time point, a red/green fluorescence ratio was then calculated. The mean red fluorescence of drug-treated cells was measured at 0, 2, 4, 6, 8, 10, and 12 h after TB treatment, and presented as a ratio of the absorbance in 590/535 nm (Maianski et al., 2004a,b).

2.13. Statistics

Statistical analysis was carried out using analysis of variance (ANOVA)—one way analysis of variance with Student–Newman correction, and the Student's t-test. Significance was assumed for values of P < 0.05.

3. Results

3.1. Cytotoxic effects of TB in human cancer cells

To investigate the cellular regulatory mechanisms of apoptosis induced by TB, human HL60 cells were selected as a research model. As shown in Fig. 1, the viability of HL60 cells was dose-dependently decreased at 24 h after exposure to various concentrations of TB (0–30 μM), but was not affected by DMSO (0.05%, v/v) treatment. Fig. 1A and C showed that the human HL60 cell was the most susceptible to TB-induced cytotoxic effects as compared to human untransformed keratinocytes and colon cancer (COLO 205) cells.

3.2. TB-induced apoptosis in human HL60 cells

DNA fragmentation was observed in the HL60 cells treated with 1 μM TB for 24 h (Fig. 2A, left), whereas a concentration higher than 90 μM TB was required for induction of DNA laddering fragmentation in the COLO205 cells (Fig. 2A, right). In consistent to Fig. 2A, a significant sub-G1 peak determined by flow cytometric analysis was observed in the HL60 cells after TB treatment for 24 h (Fig. 2B, left). In the same conditions, the COLO 205 cells were arrested at the G0/G1 phase (Fig. 2C, left).
3.3. TB-induced the occurrence of apoptosis in HL60 cells was not through differentiation signaling pathways

To further confirm whether TB-induced apoptosis was through differentiation processes as described previously (Martin et al., 1990; Olins et al., 2000), three recognized markers including the CD11b, CD33, and morphological changes were assessed (Stabellini et al., 2004). As shown in Fig. 3A, characteristic segmented nuclei and morphological features characteristic of blastic leukemic cell like was observed in the RA (1 µM, 48 h)-treated HL60 cells (Fig. 3A, middle, arrow). However, apoptotic but not differentiated cell like morphology was observed in TB (1 µM, 48 h)-treated HL60 cells (Fig. 3A, right, arrow). Consistently, RA treatment resulted in an increase in the percentage of cells expressing CD11b (Fig. 3B), and a time-dependent decrease in the percentage of CD33 expression (Fig. 3C).

Flow cytomteric analysis of DNA content revealed that TB (1 µM) treatment resulted in a well-characterized and time-dependent increase in the percentage of apoptotic cells as early as after 24 h treatment (Fig. 3D). In contrast, as shown in Fig. 3D, apoptotic cells were not detected in the HL60 cells until 3 days after RA (1 µM) treatment.

3.4. TB-induced HL60 cells apoptosis was not through protein synthesis and CD95 receptors signal pathways

Preincubation of HL60 with cycloheximide (CHX, 1 µg/ml, 1 h), a protein synthesis inhibitor (Maianski et al., 2004a,b; Mezzanzanica et al., 2004), had no influence on TB-mediated cell death (data not shown), indicating that protein synthesis was not pre-requested for TB-induced apoptosis. We then examine whether a potential signaling of TB-induced apoptosis in the HL60 cells was via the cell surface CD95/Fas death receptor. Preincubation of the HL60 cells with ZB4 (1 µg/ml), a neutralizing anti-CD95 antibody (Woo et al., 2004), showed a significant reduction in apoptosis induced by soluble CD95/FasL (100 ng/ml) when compared with the cells treated with CD95/FasL only (Fig. 4A, lanes 5 and 6). In contrast, ZB4 was unable to reduce TB (1 µM, 24 h)-triggered apoptosis (Fig. 4A, lane 4).

3.5. TB treatment caused the changes of mitochondria membrane permeability in HL60 cells

Since the CD95 death receptor seems to be not required for TB-induced apoptosis in HL60 cells (Fig. 4A), we then examined whether cytochrome c release from mitochondria into the cytosol and dissipation of the electrochemical gradient (ΔΨm) was involved in the TB-mediated apoptosis. A real-time plate reader assay showed that ΔΨm stayed relatively stable in untreated HL60 cells, while it was rapidly (within 6 h) dissipated by 1 µM TB treatment (Fig. 4B). The ΔΨm was rapidly (within 2 h) dissipated by the uncoupled CCCP or by the K+ ionophore Val and served as a positive control (Fig. 4B). As shown in Fig. 4B and C, TB (1 µM) increased outer (cytochrome c release) and inner (loss of ΔΨm) mitochondria membrane permeability. The release of cytochrome c (Fig. 4C) kinetically paralleled a decreased of mitochondria membrane potential (Fig. 4B). These observations suggest that TB-induced apoptosis may be initiated with early alterations in mitochondrial membrane stability.

3.6. Bcl-2 protein plays an important role in protection of TB-induced apoptosis in HL60 cells

We further investigated whether the observed dysfunction of mitochondria is responsible for the TB-triggered apoptosis in HL60 cells. We found that the Bcl-2
The protein level was significantly decreased in the HL60 cells at 6 h after treatment with 10 μM TB (Fig. 5A). To examine whether cytochrome c release was biologically functioning in initiating apoptosome assembly, immunoprecipitation was performed with cytosolic preparation from TB-treated cells by using antibody specifically against the cytochrome c. As shown in Fig. 5A, a significant increase of Apaf-1 protein level in cytochrome c co-precipitates was detected from HL60 cells treated with TB for 12 h.

We therefore treated the Bcl-2 over-expressed HL60 cells with TB (0.1–30 μM) for 24 h (Fig. 5B). In response to lower dose (0.1–1 μM) of TB, the HL60/Bcl-2 cells, but not control (HL60/PcDNA3) cells, were prevented from the occurrence of apoptosis (Fig. 5B), suggesting that down-regulation of Bcl-2 protein might be involved in the TB-induced apoptosis through a mitochondria-dependent pathway. However, the apoptosis was not completely prevented in the HL60/Bcl-2 cells treated with higher dose TB (>10 μM) (Fig. 5B). As shown in Fig. 5C, over-expression of Bcl-2 protein completely inhibited the TB-induced release of cytochrome c from mitochondria into cytosol in the HL60/Bcl-2 cells (Fig. 5C, lanes 2 and 3). However, the results from the time-dependent experiments revealed that higher dose (10 μM) TB-induced apoptosis could not be completely prevented in the HL60/Bcl-2 cells (Fig. 5D). These findings suggest that the results from cytochrome c release assay do not always correlate with the results from Annexin V staining. Additional signaling proteins other than Bcl-2 might be involved in the TB-induced occurrence of apoptosis in HL60 cells.

3.7. TB-induced apoptosis in HL60 cells is through activation of caspases-3 and -9, but not caspase-8

The HL60 cells were treated with various concentrations of TB (0.1–30 μM) for 24 h. TB at a lower dose...
(1 μM) caused activation of the caspase-3 and degradation of the poly-ADP–ribose polymerase, the substrate for caspase-3 (Fig. 6A). To further elucidate the apoptotic pathways involved in the activation of caspase-3, we examined the changes of the protein levels of caspases 8 and 9 in the TB-treated HL60 cells. Treatment of HL60 cells with TB (>1 μM) activated caspase-9, but not caspase 8, evidenced by degradation of the procaspase 9 as well as the appearance of its cleavage product (Fig. 6A). To confirm that the absence of caspase-8 activation was not due to technical problem, TNFα (20 μM)-treated HL60 cells showing the cleavage of procaspase-8 as well as cleavage of its substrate, Bid protein, was served as a positive control (Fig. 6B). Caspase activity assays showed that treatment of HL60 cells with high dose TB (30 μM) significantly increased caspases-3 (7.8-fold) and -9 (5.6-fold) activity as early as 12 h after drug treatment as compared with DMSO-treated group, while the caspase 8 activity was not changed significantly even at a long-term (24 h) TB treatment (Fig. 6C). To further confirm these findings, the HL60 cells were pre-incubated for 4 h with or without the caspase-8-specific inhibitor z-IETD-fmk, caspase-9-specific inhibitor z-LEHD-fmk, or the broad range inhibitor of caspases z-VAD-fmk, followed by TB (30 μM) treatment for 24 h. The percentages of apoptotic cells were analyzed by flow cytometric assay. As shown in Fig. 7, both the caspase-9-specific inhibitor (z-LEHD-fmk) and the caspase general inhibitor (zVAD-fmk) reduced the TB-induced apoptosis to a same extent. In the absence of caspase inhibitors, TB caused a 59.6% apoptotic cell death. In the presence of z-LEHD-fmk (60 μM) and zVAD-fmk (50 μM), however, the percentage of TB-induced apoptotic cell death was decreased to 6.5% and 8.3%, respectively. In contrast, the caspase-8 inhibitor (z-IETD-fmk) at a concentration of 60 μM had no effect on the TB-induced apoptosis (62.1%). The caspase-8 inhibitor at a concentration as high as 100 μM still did not cause any decrease in TB-induced apoptosis (data not shown). The TNF-α- and CD95/FasL-induced apoptosis was
completely suppressed by caspase-8 inhibitor, suggesting that z-IETD-fmk at a concentration of 60 μM is sufficient to inhibit caspase-8 activity. The specificity of these inhibitors was demonstrated by showing that vehicle
(DMSO) treatment had no effect on TB-stimulated apoptosis. Taken together, our results suggest that TB-induced apoptosis is dependent on caspase-9 activation.

4. Discussion

The ability of chemotherapeutic agents to initiate apoptosis plays an important determinant of their ther-
apeutic response. However, significant toxicity at high doses has precluded the use of chemotherapeutic agents as a monotherapy for cancers. Combination therapy is one potential method to help in reducing a compound with undesirable toxic effects but still maintain or enhance its anti-tumor efficacy. Recently, we have demonstrated that griseofulvin, an oral anti-fungal agent, potentiates the anti-cancer activities of nocodazole (ND) (Ho et al., 2001). Moreover, we showed an enhancement of TB on the ND-induced colon cancer cells apoptosis (Lee et al., 2003). TB has been used as an orally active broad-spectrum anti-fungal drug, especially active in patients with histoplasmosis or nonmeningeal cryptococcosis (Caceres-Rios et al., 2000; Rademaker and Havill, 1998). A previous study has demonstrated that approximately 70% of TB is absorbed after an oral dose (250 mg) (Jensen, 1989) and the maximum plasma concentrations of 0.5–1.5 μg/ml are reached within 2 h (Humbert et al., 1995; Kovarik et al., 1992, 1995). Another report in a human study showed that the plasma level of TB after daily oral receiving of 250 mg TB for 4 weeks was 1.7 ± 0.77 μg/ml (5.83 μM) (Kovarik et al., 1995). Here, we showed that administration of TB at a concentration as low as 1 μM for 24 h induced significant apoptosis in the HL60 cells (Figs. 3D and 4A and C). We further demonstrated that the TB-induced the occurrence of apoptosis in the HL60 cells was not mediated through differentiation process (Fig. 3A). Such results implied that administration of lower dose (1 μM) TB could reach the therapeutic concentrations in plasma. Importantly, cytotoxicity analysis showed that TB at the doses (0.01–30 μM) used in our in vitro studies was not cytotoxic for the cultured untransformed human keratinocyte. Moreover, the dose (50 mg/kg body weight) used in our previous in vivo study performed in the nude mice model was not cytotoxic for the vital organs (Lee et al., 2003).

The caspase 8/FADD (extrinsic) and mitochondrial (intrinsic) pathway are the two major signal pathways regulating apoptosis process. Both of the apoptosis routes were activated during erythroid cell differentiation (Testa, 2004) and cancer chemotherapy (Hajra and Liu, 2004). Recent studies have demonstrated that both CD95- and B cell receptor (BCR)-mediated apoptosis depend on Bax activation and cytochrome c release, although the timing and caspase-dependence of mitochondrial membrane depolarization differed considerably after CD95- or BCR-triggering (Mackus et al., 2002). However, some other death receptors in the TNF receptor family (such as TNFR1, DR3/Apo3, DR4/DR5, etc.) have been reported to be a mediator in response to cancer chemotherapy. For example, it has been shown that clinically applied anti-cancer drug, cisplatin, induced apoptosis of solid tumor cells through the CD95 and DR5-dependent pathways (Han et al., 2003; Lacour et al., 2004). Another study revealed that camptothecin or etoposide (VP-16) in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) substantially accelerated kinetics of apoptosis in human leukemia (HL60) cells. The authors suggested that DR4 aggregation mediated by camptothecin or VP-16 could represent as an important mediator that accelerates TRAIL-induced apoptosis (Bergeron et al., 2004). In contrast, tumors resistant to cytotoxic drugs may occur through altered expression of death receptors DR4 and DR5 (Zhang and Fang, 2005), resistance to TRAIL-mediated apoptosis (Zhang and Fang, 2005), or sequestration of Fas/caspase-8 signaling pathways (Barnhart et al., 2005; Kim et al., 2001). In this study, although only one death receptor CD95/Fas has been examined to explore the eventual effect of TB on the extrinsic (nonmitochondrial) pathway of apoptosis. These findings suggested that TB might be a useful salvage agent in the management of chemotherapy resistent cancer.
We have previously demonstrated that TB induced cell growth arrest at the G0/G1 phase through a p53-dependent signaling pathway (Ho et al., 2004; Lee et al., 2003). The TB-induced apoptosis, however, was through a p53-independent signaling pathway. Our data suggest that intracellular regulatory proteins other than p53 may be involved in TB-induced apoptosis. Accordingly, we investigated the p53-independent mechanisms in TB-induced apoptosis. Our results showed that intracellular regulatory proteins other than p53 may be involved in TB-induced apoptosis. Accordingly, we investigated the p53-independent mechanisms in TB-induced apoptosis. Our results showed that preincubation of the HL60 (p53-null) cells with CHX (1 μg/ml, 1 h) had no influence on TB-mediated cell death (data not shown), suggesting that de novo protein synthesis is not a prerequisite for TB-induced apoptosis.

In turn, decrease of Bcl-2 protein expression may result in excess Bax homodimers, which will be translocated to the mitochondrial outer membrane (Fig. 5A), and then led to leakage of cytochrome c through its pore-forming activity (Wei et al., 2001). Our study provide evidences showed that Bcl-2 protein significantly prevented cytochrome c release, but cannot completely prevent the TB-treated HL60/Bcl-2 cells undergoing apoptosis (Fig. 5B and D), suggesting that additional apoptotic factors other than Bcl-2/Bax family proteins are involved in the TB-induced the occurrence of apoptosis in HL60.

In this study, our results first demonstrated that TB induced promyelocytic (HL60) cell apoptosis via a signaling pathway independent of cell growth arrest. We further examined the sequence of the molecular events involved in the activation of mitochondria-mediated signaling pathways during the process of TB-induced apoptosis. Our results indicate that the leakage of cytochrome c was preceded by the translocation of Bax to mitochondria. Our data suggest that translocation of Bax to mitochondria, which lead to release of cytochrome c, is dependent on amplification of the specific caspase cascade and entry of the cell into the execution phase of apoptosis. This hypothesis is supported by our

Fig. 7. Effects of caspase activation on mitochondria-mediated apoptosis in the TB-treated HL60 cells. For the caspase inhibitors studies, the HL60 cells were incubated with 50 μM of inhibitors specific to caspase-8 (zIETD-fmk), caspase-9 (zLEHD-fmk), or the general inhibitor of caspases (zVAD-fmk) for 4 h as indicated at the top of each profile. The HL60 cells treated with TNFα (20 μM) and FasL (100 ng/ml) in the presence of zIETD-fmk were performed as a positive control. The cells were then exposed to TB at a concentration of 30 μM for an additional 24 h. The control cells were incubated with DMSO without TB or caspase-specific inhibitors. The DNA contents were monitored by flow cytometry as described in Section 2.
results showing that translocation of the Bax to mitochondria, release of cytochrome c into cytosol, and the occurrence of cell apoptosis were clearly inhibited by the caspase-9-specific inhibitor (Z-LEHD-fmk) (Fig. 7). The caspase-9 might therefore play an important role in mitochondria signaling pathways for TB-induced apoptosis. Similar results described by previous report showed that activation of caspase-9 usually occurs downstream of cytochrome c release from mitochondria (Saleh et al., 1999). Assembly of the apoptosome complex might represent the initiating step for the TB-mediated caspase cascade activation (Saelens et al., 2004). However, whether this apoptosome directly causes the release of the different mitochondrial apoptogenic factors simultaneously is currently unknown (Martin et al., 2004). Further studies are required to understand how the compositions of the apoptosome active Bax translocation to the mitochondria and trigger the mitochondrial release of cytochrome c.

Acknowledgment

This study was supported by the National Science Council grant NSC 93-2314-B-038-018 to Dr. Ho and NSC 93-2320-B-038-018 to Dr. Lee and NSC 93-2314-B-038-050 to Dr. Wu and by the Shin Kiong Wu Ho-Su Memorial Hospital (SKH-TMU-92-07).

References


Rice, A.M., Li, J., Sartorelli, A.C., 2004. Combination of all-trans retinoic acid and lithium chloride surmounts a retinoid differentiation block induced by expression of Scl and Rbtl2 transcription factors in myeloid leukemia cells. Leukemia Res. 28 (4), 399–403.


